翻訳と辞書
Words near each other
・ Spectral sensitivity
・ Spectral sequence
・ Spectral set
・ Spectral shape analysis
・ Spectral signal-to-noise ratio
・ Spectral signature
・ Spectral slope
・ Spectral Sound
・ Spectral space
・ Spectral splatter
・ Spectral tarsier
・ Spectral test
・ Spectral theorem
・ Spectral theory
・ Spectral theory of compact operators
Spectral theory of ordinary differential equations
・ Spectral triple
・ Spectral Visions of Mental Warfare
・ Spectral width
・ Spectral Worship
・ SpectraLayers
・ Spectralia
・ Spectralon
・ Spectranet
・ Spectrangle
・ Spectrasensors Inc
・ Spectrasonics
・ Spectravideo
・ SpectraVision
・ SPECTRE


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Spectral theory of ordinary differential equations : ウィキペディア英語版
Spectral theory of ordinary differential equations
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the TitchmarshKodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
==Introduction==
Spectral theory for second order ordinary differential equations on a compact interval was developed by Jacques Charles François Sturm and Joseph Liouville in the nineteenth century and is now known as Sturm–Liouville theory. In modern language it is an application of the spectral theorem for compact operators due to David Hilbert. In his dissertation, published in 1910, Hermann Weyl extended this theory to second order ordinary differential equations with
singularities at the endpoints of the interval, now allowed to be infinite or semi-infinite. He simultaneously developed a spectral theory adapted to these special operators and introduced boundary conditions in terms of his celebrated dichotomy between ''limit points'' and ''limit circles''.
In the 1920s John von Neumann established a general spectral theorem for unbounded self-adjoint operators, which Kunihiko Kodaira used to streamline Weyl's method. Kodaira also generalised Weyl's method to singular ordinary differential equations of even order and obtained a simple formula for the spectral measure. The same formula had also been obtained independently by E. C. Titchmarsh in 1946 (scientific communication between Japan and the United Kingdom had been interrupted by World War II). Titchmarsh had followed the method of the German mathematician Emil Hilb, who derived the eigenfunction expansions using complex function theory instead of operator theory. Other methods avoiding the spectral theorem were later developed independently by Levitan, Levinson and Yoshida, who used the fact that the resolvent of the singular differential operator could be approximated by compact resolvents corresponding to Sturm–Liouville problems for proper subintervals. Another method was found by Mark Grigoryevich Krein; his use of ''direction functionals'' was subsequently generalised by Izrail Glazman to arbitrary ordinary differential equations of even order.
Weyl applied his theory to Carl Friedrich Gauss's hypergeometric differential equation, thus obtaining a far-reaching generalisation of the transform formula of Gustav Ferdinand Mehler (1881) for the Legendre differential equation, rediscovered by the Russian physicist Vladimir Fock in 1943, and usually called the Mehler–Fock transform. The corresponding ordinary differential operator is the radial part of the Laplacian operator on 2-dimensional hyperbolic space. More generally, the Plancherel theorem for SL(2,R) of Harish Chandra and GelfandNaimark can be deduced from Weyl's theory for the hypergeometric equation, as can the theory of spherical functions for the isometry groups of higher dimensional hyperbolic spaces. Harish Chandra's later development of the Plancherel theorem for general real semisimple Lie groups was strongly influenced by the methods Weyl developed for eigenfunction expansions associated with singular ordinary differential equations. Equally importantly the theory also laid the mathematical foundations for the analysis of the Schrödinger equation and scattering matrix in quantum mechanics.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Spectral theory of ordinary differential equations」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.